

An Overview of Utility and Mechanisms of Photonics for Power Electronics

Invited Lecture

Sudip K. Mazumder, Ph.D., FIEEE, FAAAS

Professor, University of Illinois Chicago (UIC)
Director, Lab. for Energy & Switching-Electronics Sys. (LESES)

President, NextWatt LLC

Editor at Large, IEEE Transactions on Power Electronics

Acknowledgements:

NSF, ONR, ARPA-E, AFRL, DOE, LLNL, UIC

ARPA-E Workshop: Ultra-Fast-Triggered Semiconductors for Enhanced System Resiliency Washington DC

October 6-7, 2022

Disclaimer

The content of this presentation is covered by the following intellectual properties:

- 1. S.K. Mazumder, "Photonically activated single bias fast switching integrated thyristor", U.S. Patent Application# 13281207, filed in 2011.
- 2. S.K. Mazumder and T. Sarkar, "Optically-triggered multi-stage power system and devices", U.S. Patent Number 8183512, awarded on May 22, 2012.
- 3. S.K. Mazumder and T. Sarkar, "Optically-triggered power system and devices", USPTO Patent# 8,294,078, awarded on October 23, 2012.
- 4. X. Wang, S.K. Mazumder, and W. Shi, "Insulated-gate photoconductive semiconductor switch", USPTO Patent# 9543462 B2, awarded on January 10, 2017.

Utility of Photonics for Power Electronics (PE) [1], [2]

- Immunity from internal/external electromagnetic interference (EMI)
- Electrical isolation between power and control stages (no backpropagation)
- No need for complex floating electrical gate drivers
- Reduced device triggering delay
- Addressing issues with n&p type suitable doping for WBG/UWBG power sem. devices
- Removes requirement for high quality gate dielectrics for power sem. devices
- Dynamic modulation of device switching transition dynamics feasible with minimal excitation effort and selective excitation

Some Utility (Application) of Photonic PE: Leses Power Grid (HV/MV)

Static Var Compensator (SVC)

Solid-State Transformer

High Voltage Direct Current (HVDC)

Solid-State Fault Current Limiter

StatCom

Pulsed Power System

Some Utility (Application) of Photonic PE: Discretized HF Power Transfer (LV/MV) (Patented) [3]-[5]

Traditional Power Transfer

Some Utility (Application) of Photonic PE: Discretized HF Power Transfer (LV/MV) (Patented) [3]-[5]

Coded Asynchronous Multi-Scale High Frequency Power Transfer (Patent Protected)

Dc or Ac

Load(s)

(d)

Some Utility (Application) of Photonic PE: Discretized HF Power Transfer (LV/MV) (Patented) [3]-[5]

Coded Asynchronous Multi-Scale High Frequency Power Transfer (Patent Protected)

Requirements of PE from (Optical) Power Semiconductor Devices (PSDs)

Low cost Low leakage Low on-state drop Low optical power Moderate to high repetition rate Wide variation in duty cycle Fast switching dynamics Reduced dv/dt and di/dt stress High reliability (electrical, mechanical, thermal stabilities) Low device complexity Low drive complexity

Mechanisms of Optical PSD: Low Rise Time [6]

PCSS

- High speed device turn on
- Minimum light activation to actuation delay
- Relatively simple device structure
- No gate dielectric

- Triggering efficiency low
- Triggering cost could be high
- Duty cycle typically small
- Current filamentation problem

GaN PCSS

Cross-Section Diagram of GaN PCSS

Optical Image (top view) of GaN PCSS

LLNL

LIBERTY 2003

Vertical PCSS switch capable of holding-off up to 50 kV

Radial PCSS 65 MHz Burst Mode

20 kV 65 MHz burst mode switching into 50 Ω

GaN Hybrid PCSS (UIC)

UWBG (Diamond) PCSS

- Higher speed device turn on
 - Mid-bandgap laser reduces cost

- Enhanced device cost
- Reduced laser utilization

Source: Sandia, Texas Tech, UIC LLNL

Mechanisms of Optical PSD: Low Optical Power [6]

- Smooth turn on
- High device gain
- Very low optical triggering power due to pilot thyristor
- Device real-time status available

- Turn off is slow
- Gate drive is complex and lossy since it has to handle large turn-off current
- Integrated device structure complex

Mechanisms of Optical PSD: Low Optical Power and Faster Switching [6],[10],[11]

SiC Optical ETO (UIC)

- No control bias required
- MF operation feasible
- Different materials can be used
- Dynamic modulation possible
- Series connection possible

•

Series Connection

Mechanisms of Optical PSD: Low Optical Power and Faster Switching [6],[10],[11]

SiC 12-kV Thyristor Structure with Beveling

SiC VHV Thyristor Die

SiC VHV Thyristor Module

OTPT

Acknowledgement: UIC

Acknowledgement: Cree, Silicon Power

Mechanisms of Optical PSD: Optical Gate Driven Insulated Gate PSD [12]

Triggering wavelength is unchanged

Separation of power and control

- Higher onset delay
- No direct photogeneration

Source: UIC

Mechanism for Optical Control: Experimental Illustrations [12]

1.8

Mechanism for Optical Control: Experimental Illustrations [12]

0.4

0.6

0.8

1.2

Optical power (W)

1.4

1.6

1.8

Turn-off di/dt $di/dt (A/\mu s)$ 0.4 0.6 0.8 1.2 1.4 Optical power (W)

1.2

Mechanism for Optical Control: Experimental Illustrations [12]

Frequency (MHz)

Frequency (MHz)

Summary

- Optically-controlled PSDs yield several device and system level advantages which can have direct impact on the reliability, efficiency, simplicity, controllability, and form factor of the PE based next-generation energy system / grid.
- 2. Innovative photonic MV/HV PSDs that leverage several superior properties of UWBG/WBG materials to yield key performance metrics (e.g., high gain, low leakage, low loss, low rise/fall times, wide duty cycle etc.) and support the goals of PESs outlined in "1" are a necessity.
- 3. A key aspect of that device-system connectivity, depends on how these optical UWBG/WBG PSDs are innovatively controlled to mitigate their impacts on the system environment and vice-versa and achieve multi-scale optimality of the next-generation PES.

References

- 1. S. K. Mazumder and T. Sarkar, "Optically-triggered power transistor (OTPT) for Fly-by-light (FBL) and EMI-susceptible power electronics: Plenary paper," 2006 37th IEEE Power Electronics Specialists Conference, 2006, pp. 1-8, doi: 10.1109/pesc.2006.1711731.
- 2. T. Sarkar and S.K. Mazumder, "Dynamic power density, wavelength, and switching time modulation of optically-triggered power transistor (OTPT) performance parameters," Microelectronics Journal, vol. 38, pp. 285-298, 2007.
- 3. S.K. Mazumder and A. Gupta, "Systems and methods for co-transmission of power and data," USPTO utility patent number 11245437, Feb 8, 2022.
- 4. A. Gupta and S. K. Mazumder, "Sequential co-transmission of high-frequency power and data signals," in IEEE Transactions on Industrial Informatics, vol. 14, no. 10, pp. 4440-4445, Oct. 2018, doi: 10.1109/TII.2018.2794373.
- A. Gupta, N. Kumar and S. K. Mazumder, "Generalized input impedance modeling of TL-network-based HFDPS for validating frequency-dependent criteria for power-signal integrity," in IEEE Transactions on Industrial Electronics, vol. 65, no. 5, pp. 4114-4124, May 2018, doi: 10.1109/TIE.2017.2758739.
- 6. S. K. Mazumder, "An overview of photonic power electronic devices," in IEEE Transactions on Power Electronics, vol. 31, no. 9, pp. 6562-6574, Sept. 2016, doi: 10.1109/TPEL.2015.2500903.
- 7. L. Chang and S. K. Mazumder, ""Introduction to power electronic technologies in distributed energy resources," Invited Tutorial, Power America, August 3, 2021.

References

- 8. X. Wang, S.K. Mazumder, and W. Shi, "Insulated-gate photoconductive semiconductor switch," USPTO Patent# 9543462 B2, awarded on January 10, 2017.
- 9. X. Wang, S. K. Mazumder and W. Shi, "A GaN-based insulated-gate photoconductive semiconductor switch for ultrashort high-power electric pulses," in IEEE Electron Device Letters, vol. 36, no. 5, pp. 493-495, May 2015, doi: 10.1109/LED.2015.2416188.
- A. Mojab and S. K. Mazumder, "Design and characterization of high-current optical Darlington transistor for pulsed-power applications," in IEEE Transactions on Electron Devices, vol. 64, no. 3, pp. 769-778, March 2017, doi: 10.1109/TED.2016.2635632.
- 11. A. Mojab and S. K. Mazumder, "Active optical modulation for series-connected emitter turn-off thyristors," in IEEE Transactions on Industrial Electronics, vol. 66, no. 7, pp. 5576-5580, July 2019, doi: 10.1109/TIE.2018.2854592.
- 12. S. K. Mazumder and T. Sarkar, "Optically activated gate control for power electronics," in IEEE Transactions on Power Electronics, vol. 26, no. 10, pp. 2863-2886, Oct. 2011, doi: 10.1109/TPEL.2009.2034856.
- L. Voss, S.K. Mazumder, R. Nemanich, and R. Grivickas, "WBG and UWBG photoconductive switching", Invited Lecture, IEEE International Symposium on Power Electronics for Distributed Generation Systems, June 2021.
- 14. E. A. Hirsch et al., "High-gain persistent nonlinear conductivity in high-voltage gallium nitride photoconductive switches," 2018 IEEE International Power Modulator and High Voltage Conference (IPMHVC), 2018, pp. 45-50, doi: 10.1109/IPMHVC.2018.8936660.

Thank You!

Dr. Sudip K. Mazumder, FIEEE, FAAAS

Professor and Director of LESES, UIC

President, NextWatt LLC

Ph: +1 312-355-1315

E-mail: mazumder@uic.edu

URL: https://mazumder.lab.uic.edu/